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In the early 1600s, Johannes Kepler proposed three laws of planetary motion. Kepler 
was able to summarize the carefully collected data of his mentor - Tycho Brahe - with 
three statements that described the motion of planets in a sun-centered solar system. 
Kepler's efforts to explain the underlying reasons for such motions are no longer 
accepted; nonetheless, the actual laws themselves are still considered an accurate 
description of the motion of any planet and any satellite. 

Kepler's three laws of planetary motion can be described as follows: 

• The path of the planets about the sun is elliptical in shape, with the center of the sun 
being located at one focus. (The Law of Ellipses) 

• An imaginary line drawn from the center of the sun to the center of the planet will 
sweep out equal areas in equal intervals of time. (The Law of Equal Areas) 

• The ratio of the squares of the periods of any two planets is equal to the ratio of the 
cubes of their average distances from the sun. (The Law of Harmonies) 

 
  

The Law of Ellipses 

Kepler's first law - sometimes referred to as the law of ellipses - explains that planets 
are orbiting the sun in a path described as an ellipse. An ellipse can easily 
be constructed using a pencil, two tacks, a string, a sheet of 
paper and a piece of cardboard. Tack the sheet of paper to the 
cardboard using the two tacks. Then tie the string into a loop and 
wrap the loop around the two tacks. Take your pencil and pull 
the string until the pencil and two tacks make a triangle (see 
diagram at the right). Then begin to trace out a path with the 
pencil, keeping the string wrapped tightly around the tacks. The 
resulting shape will be an ellipse. An ellipse is a special curve in 
which the sum of the distances from every point on the curve to 
two other points is a constant. The two other points (represented here by the tack 
locations) are known as the foci of the ellipse. The closer together that these points 
are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is 
the special case of an ellipse in which the two foci are at the same location. Kepler's 
first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, 
with the sun being located at one of the foci of that ellipse. 

 

The Law of Equal Areas 



Kepler's second law - sometimes referred to as the law of equal areas - describes the 
speed at which any given planet will move while orbiting the sun. The speed at which 
any planet moves through space is constantly changing. A planet moves fastest when 
it is closest to the sun and slowest when it is furthest from the sun. Yet, if an imaginary 
line were drawn from the center of the planet to the center of the sun, that line would 
sweep out the same area in equal periods of time. For instance, if an imaginary line 
were drawn from the earth to the sun, then the area swept out by the line in every 31-
day month would be the same. This is depicted in the diagram below. As can be 
observed in the diagram, the areas formed when the earth is closest to the sun can be 
approximated as a wide but short triangle; whereas the areas formed when the earth is 
farthest from the sun can be approximated as a narrow but long triangle. These areas 
are the same size. Since the base of these triangles are shortest when the earth is 
farthest from the sun, the earth would have to be moving more slowly in order for this 
imaginary area to be the same size as when the earth is closest to the sun. 

 

 

  

 

The Law of Harmonies 

Kepler's third law - sometimes referred to as the law of harmonies - compares the 
orbital period and radius of orbit of a planet to those of other planets. Unlike Kepler's 
first and second laws that describe the motion characteristics of a single planet, the 
third law makes a comparison between the motion characteristics of different planets. 
The comparison being made is that the ratio of the squares of the periods to the cubes 
of their average distances from the sun is the same for every one of the planets. As an 
illustration, consider the orbital period and average distance from sun (orbital radius) 
for Earth and mars as given in the table below. 

Planet 
Period 

(s) 
Average 

Distance (m) 
T2/R3 

(s2/m3) 



Earth 3.156 x 107 s 1.4957 x 1011 2.977 x 10-19 

Mars 5.93 x 107 s 2.278 x 1011 2.975 x 10-19 

  

Observe that the T2/R3 ratio is the same for Earth as it is for mars. In fact, if the 
same T2/R3 ratio is computed for the other planets, it can be found that this ratio is 
nearly the same value for all the planets (see table below). Amazingly, every planet 
has the same T2/R3 ratio. 

Planet 
Period 

(yr) 
Average 

Distance (au) 
T2/R3 

(yr2/au3) 

Mercury 0.241 0.39 0.98 

Venus .615 0.72 1.01 

Earth 1.00 1.00 1.00 

Mars 1.88 1.52 1.01 

Jupiter 11.8 5.20 0.99 

Saturn 29.5 9.54 1.00 

Uranus 84.0 19.18 1.00 

Neptune 165 30.06 1.00 

Pluto 248 39.44 1.00 

(NOTE: The average distance value is given in astronomical units where 1 a.u. is equal 
to the distance from the earth to the sun - 1.4957 x 1011 m. The orbital period is given 
in units of earth-years where 1 earth year is the time required for the earth to orbit the 

sun - 3.156 x 107 seconds. ) 

  

Kepler's third law provides an accurate description of the period and distance for a 
planet's orbits about the sun. Additionally, the same law that describes the T2/R3 ratio 
for the planets' orbits about the sun also accurately describes the T2/R3 ratio for any 
satellite (whether a moon or a man-made satellite) about any planet. There is 
something much deeper to be found in this T2/R3 ratio - something that must relate to 
basic fundamental principles of motion. In the next part of Lesson 4, these principles 
will be investigated as we draw a connection between the circular motion principles 
discussed in Lesson 1 and the motion of a satellite. 

 
How did Newton Extend His Notion of Gravity to Explain Planetary Motion? 

Newton's comparison of the acceleration of the moon to the acceleration of objects on 
earth allowed him to establish that the moon is held in a circular orbit by the force of 
gravity - a force that is inversely dependent upon the distance between the two objects' 
centers. Establishing gravity as the cause of the moon's orbit does not necessarily 
establish that gravity is the cause of the planet's orbits. How then did Newton provide 



credible evidence that the force of gravity is meets the centripetal force requirement for 
the elliptical motion of planets? 

Recall from earlier in Lesson 3 that Johannes Kepler proposed three laws of planetary 
motion. His Law of Harmonies suggested that the ratio of the period of orbit squared 
(T2) to the mean radius of orbit cubed (R3) is the same value k for all the planets that 
orbit the sun. Known data for the orbiting planets suggested the following average 
ratio: 

k = 2.97 x 10-19 s2/m3 = (T2)/(R3) 
Newton was able to combine the law of universal gravitation with circular motion 
principles to show that if the force of gravity provides the centripetal force for the 
planets' nearly circular orbits, then a value of 2.97 x 10-19 s2/m3 could be predicted for 
the T2/R3 ratio. Here is the reasoning employed by Newton: 

Consider a planet with mass Mplanet to orbit in nearly circular motion about the sun of 
mass MSun. The net centripetal force acting upon this orbiting planet is given by the 
relationship 

Fnet = (Mplanet * v
2) / R 

This net centripetal force is the result of the gravitational force that attracts the planet 
towards the sun, and can be represented as 

Fgrav = (G* Mplanet * MSun ) / R
2 

Since Fgrav = Fnet, the above expressions for centripetal force and gravitational force are 
equal. Thus, 

(Mplanet * v
2) / R = (G* Mplanet * MSun ) / R

2 
Since the velocity of an object in nearly circular orbit can be approximated as v = 
(2*pi*R) / T, 

v2 = (4 * pi2 * R2) / T2 
Substitution of the expression for v2 into the equation above yields, 

(Mplanet * 4 * pi2 * R2) / (R • T2) = (G* Mplanet * MSun ) / R
2 

By cross-multiplication and simplification, the equation can be transformed into 

T2 / R3 = (Mplanet * 4 * pi2) / (G* Mplanet * MSun ) 
The mass of the planet can then be canceled from the numerator and the denominator 
of the equation's right-side, yielding 

T2 / R3 = (4 * pi2) / (G * MSun ) 
The right side of the above equation will be the same value for every planet regardless 
of the planet's mass. Subsequently, it is reasonable that the T2/R3 ratio would be the 
same value for all planets if the force that holds the planets in their orbits is the force of 
gravity. Newton's universal law of gravitation predicts results that were consistent with 
known planetary data and provided a theoretical explanation for Kepler's Law of 
Harmonies. 

 


